
1

Refining an Understanding of Computational Thinking

Cynthia C. Selby

University of Southampton

Highfield

Southampton UK

44 (0) 2380 593475

C.Selby@soton.ac.uk

John Woollard

University of Southampton

Highfield

Southampton UK

44 (0) 2380 592998

J.Woollard@soton.ac.uk

Abstract

This paper identifies aspects of computational thinking and proposes a description that

meets the needs of teachers and academics reflecting upon the developing UK

curriculum. Since Jeanette Wing’s use of the term computational thinking in 2006,

various discussions have arisen seeking a robust definition of the phrase with little

consensus. In order to facilitate consistent curriculum design and appropriate

assessment, it is argued that a definition and description of the elements of

computational thinking need to be identified. Criteria are developed for the objectives

of a computational thinking definition, in accordance with the needs identified in the

literature. The most frequently occurring terms, descriptions, and meanings used to

characterise computational thinking are also identified in the literature. Using the

criteria as a guide and the collected terms as the vocabulary, a definition of

computational thinking is developed which incorporates the concepts of automation,

abstraction, decomposition, algorithmic design, evaluation, and generalisation.

Keywords: Computational thinking, definition, abstraction, decomposition,

algorithmic thinking, algorithmic design, generalization, evaluation

Introduction

The term ‘computational thinking,’ when used by Jeanette Wing (2006) in her call to

make thinking like a computer scientist a fundamental skill for everyone, excited educators

and academics. This presented an opportunity to promote computer science to a wider

audience, but it also introduced a challenge. Wing did not precisely define the term and state

exactly what the nature of ‘computational thinking’ for everyone. Since then, there have

been attempts by authoritative individuals and groups (Barr & Stephenson, 2011; Denning,

2

2007; Grover & Pea, 2013; Guzdial, 2008; National Research Council [NRC], 2010) to

derive a definition of computational thinking.

The aim of this review is to shed new light on the discussions that attempt to develop

a definition of computational thinking with the objectives including: to define more narrowly,

not more broadly; to bring an order to the criteria not necessarily to accommodate all

viewpoints; to refine the definition to facilitate assessment; to retain the validity of work that

has been done previously, such as the development of curricula; to separate a definition from

those activities that might promote acquisition of computational thinking skills; and to

separate a definition from those artefacts and activities that evidence the use of those skills.

Method

In an attempt to remain true to Wing’s original vision, this literature search began

with the seminal ACM article (Wing, 2006). During the following years, there was much

activity around the topic (Denning, 2007; Guzdial, 2008; NRC, 2010; NRC, 2011; Wing,

2007; Wing, 2008). As the term became more accepted and the ‘for everyone’ manifesto

generated interest, the focus shifted to curricula and classroom experiences (Barr &

Stephenson, 2011; Bell, Andreae & Lambert, 2010; Brinda, Puhlmann & Schulte, 2009;

Computing at School Working Group [CAS], 2012; Iyer, Baru, Chitta, Khan &

Vishwanathan, 2010). All this time, other fields were also exploring their connections to

computational thinking (Eisenberg, 2010; Lieu & Wang, 2010; Serafini, 2011; Zhang & Luo,

2012). In order to reflect this range of interest in deriving a definition for computational

thinking, a broad selection of literature databases was explored. Where available, citation

indices were searched to reveal more recent refinement of the original definition. The

searched databases represent the crossover between mathematics, psychology, sciences,

computer science, engineering, education, and computer science education research. They

include the Web of Science and Citations, Engineering Village, Google Scholar and

3

Citations, IEEE Explore, ACM Digital Library, Lecture Notes in Computer Science,

Compendex, PsycINFO, ERIC, and the British Education Index.

In an attempt to contribute to the development of a definition, the publications were

analysed to discern the development, over time, of the phrase computational thinking.

Descriptions and suggested definitions of computational thinking were identified in each

publication. The terminology, common across these descriptions and definitions, was

collated. Where equivalences allowed, similar terms were grouped together. Where

descriptions were encountered without the direct usage of one of the proposed terms, they

were attributed to the term. The most frequently occurring individual terms and groups of

terms are presented in the following sections. From this basic collection of terms, a

definition of computational thinking is formulated and proposed.

Justification for the inclusion or exclusion of terms is presented on a term-by-term

basis. Justification is based on consistency of usage and consistency of interpretation across

the literature. The resulting definition reflects much of the consensus found in the literature

while removing less well-defined terms.

Evidence from literature

Some authors/papers/commentaries assert that a precise definition of computational

thinking is not required (Guzdial, 2011; Hu, 2011). However, the discussion presented in this

paper is driven by a perceived need to support professionals working in the field of computer

science education and the developing computing curricula. This need for definition is

supported in the literature (Barr & Stephenson, 2011; Cooper, Pérez & Rainey, 2010;

Guzdial, 2011; NRC, 2011; NRC, 2010; Werner, Denner, Campe & Kawamoto, 2012).

Guzdial (2011) has suggested that a very broad definition is acceptable. Such

acceptance could shift the focus away from what computational thinking is to how

computational thinking should be taught and how evidence of its acquisition might be

4

observed in learners. Hu (2011) supports this by proposing that teachers are confident that

the teaching of computer science does promote computational thinking. Even though they

may not know exactly how this mechanism works, teachers recognise that the more learners

practice computation, in terms of computer science, the better at computational thinking they

become. Another broad definition of computational thinking is suggested by Grover and Pea

(2013), in exploring the K-12 environment. This same argument is expressed by those who

design or influence the design of computer science curricula. Several curricula (Bell et al.,

2010; Brinda et al., 2009; Computer Science Teachers Association Task Force [CSTA],

2011; CAS, 2012) and cross-curricular activities (Curzon, Peckham, Taylor, Settle &

Roberts, 2009; Eisenberg, 2010), while acknowledging the vagueness of a computational

thinking definition, continue to include a focus on concepts and techniques from computer

science. In presenting these concepts and techniques, the curricula include terminology often

found in descriptions of computational thinking. Some of this terminology will be explored

in more detail below.

Cuny (NRC, 2010) suggests that if computational thinking is included in a

curriculum, it requires assessment. Without agreement on a common definition of

computational thinking, it will be difficult, if not impossible, to develop appropriate

assessment tools that actually measure the ability to think computationally (NRC, 2010).

Werner et al. (2012) also view the lack of a definition and appropriate assessment tools as

adversely affecting the delivery of computational thinking to secondary pupils. Current

definitions of computational thinking are seen as confusing to those not trained in computer

science (Cooper et al., 2010; Kranov, Bryant, Orr, Wallace & Zhang, 2010). A rigorous and

agreed definition might ensure that computational thinking in these new curricula for the K-

12 years will be more than, as Malyn-Smith argues, ‘… just a bunch of examples that are

placed into the curriculum at the discretion of individual teachers’ (NRC, 2011, p.33).

5

The balance of argument is still in favour of searching for a robust definition of

computational thinking. Although it may be possible, without a robust definition, to identify

examples of the practice of computational thinking, the ability to measure computational

thinking may be hampered by that same lack.

Consensus terms

Three terms appear consistently throughout the literature reviewed here. There

appears to be a consensus that a definition of computational thinking should include the idea

of a thought process, the concept of abstraction, and the concept of decomposition.

A thought process

When introducing the term, computational thinking, Wing (2006) described it as a

way that humans think about solving problems. It incorporates the set of mental tools used in

computer science. These tools are used to transform a difficult problem into one that can be

solved more easily. The Royal Society identifies computational thinking in an even broader

sense as ‘… the process of recognising aspects of computation in the world that surrounds us,

and applying tools and techniques from Computer Science to understand and reason about

both natural and artificial systems and processes’ (The Royal Society, 2012, p. 29). In adding

his voice to Wing’s, calling for the explicit teaching of computational thinking, Guzdial

(2008) refers to computational thinking as a way of thinking about computing. Workshop

participants (NRC, 2010) agreed that it incorporates a range of mental tools and concepts

from computer science. This idea is extended to represent problems as information processes

and solutions as algorithms (Denning, 2011). Aho (2012) picks up the idea of problem

transformation when he describes computational thinking as the thought processes in

formulating problems and solutions that can be expressed as algorithms. These thought

processes do have focus; frequently that focus is described as problem solving. Finally, Wing

6

expresses these refinements by defining computational thinking as ‘… the thought processes

involved in formulating problems and their solutions so that the solutions are represented in a

form that can be effectively carried out by an information-processing agent’ (Cuny, Snyder &

Wing, 2010, cited in Wing, 2011, p.20). Because of this consensus, a definition of

computational thinking should include the concept of a thought process.

Abstraction

Although the idea of abstraction, hiding complexity, as being part of computational

thinking is introduced by Wing in her original article (Wing, 2006), the definition develops

over subsequent years. She amends the definition to include simultaneous consideration for

multiple layers of abstraction and consideration for defining the interfaces between the layers

(Wing, 2007). Even Denning (Ubiquity, 2007) acknowledges that abstraction plays an

important part in computing, including programming. However, he points out that the act of

abstracting is not unique to computer science. The next year, Wing (2008) defines

abstraction as the cornerstone of computational thinking. Several participants concur that

computational thinking has a focus around the process of abstraction, creating them and

defining the relationships between them (NRC, 2010). More recently, Barr and Stephenson

(2011) include the ability to abstract in a definition of computational thinking applicable to

the K-12 age group. The concept of abstraction is explored by L’Heureux, Boisvert, Cohen

and Sanghera (2012) where it is one of six aspects of their information technology approach

to computational thinking. Lu and Fletcher (2009) view programming as analogous to

literary analysis in English and propose the use of a computational thinking language, which

includes the concept of abstraction. Again, in the middle and high school classroom,

abstraction is identified as one of the key concepts of computational thinking (Lee et al.,

2011; Yevseyeva & Towhidnejad, 2012). Higher education (Zhang & Luo, 2012) is also

represented in this group advocating the inclusion of abstraction in a definition. In addition

7

to functional abstraction, data abstractions are also included (Voskoglou & Buckley, 2012).

Because of this consensus, a definition of computational thinking should include the concept

of abstraction.

Decomposition

Decomposition is required when dealing with large problems, complex systems, or

complex tasks. Breaking problems down by functionality is identified by Wing (2006, 2007)

as part of computational thinking. The participants in the first NRC workshop also identify

the need for problem decomposition (NRC, 2010). In the next workshop, focusing on

pedagogy, participants extend this idea. Tinker views the core of computational thinking as

breaking down big problems (NRC, 2011). Edelson points out that the creation of solutions

requires breaking problems down into chunks of particular functionality and sequencing the

chunks (NRC, 2011). Most recently, in refining his own definition of computational

thinking, Guzdial (2012) includes the use of tools including abstraction and decomposition.

In the secondary classroom, Yevseyeva and Towhidnejad (2012) also use the term

decomposition in their working definition of computational thinking. In light of this

consensus, a definition of computational thinking should include the concept of

decomposition.

Three terms are proposed for inclusion in the definition of computational thinking.

Inclusion of a thought process, abstraction, and decomposition is supported by a consensus

found in the reviewed literature. These terms are used consistently across the literature.

Their use does not reflect any discrepancy in perceived meaning of the terms.

Other possible terms

Although less consistently than the terms above, several different terms and ideas do

recur across the literature reviewed here. Even if a term or idea recurs, its interpretation is

8

not always consistent across articles. Several other proposed terms are broad and high-level.

A lack of specific interpretation may make inclusion of these terms in a definition difficult.

The terms identified fall into these four areas: thinking, problem solving, computer science,

and imitation terms

Thinking terms

Although the idea that computational thinking represents a cognitive process attracts

consensus, there are suggestions that specific types of thinking should be incorporated.

These specific types of thinking are logical thinking, algorithmic thinking, engineering

thinking, and mathematical thinking.

The concept of logical thinking, although not specifically defined, occurs several times in the

literature. Albeit not perceived exactly as equivalent, terms to describe similar types of

thinking are grouped into this category. These include mathematical thinking, engineering

thinking, and heuristic thinking. In her original article, Wing (2006) indicates that

computational thinking incorporates heuristic reasoning to devise a solution. In addition to

abstraction and decomposition, Guzdial (2012) also includes heuristic reasoning as an

appropriate tool to use when engaging in computational thinking. Logical reasoning is

included by Iyer et al. (2010) in their model computer science curriculum in order to promote

high-level thinking skills that are not necessarily subject specific. L’Heureux et al. (2012), in

detailing an aspect of their information technology approach to computational thinking,

define logical thinking as the ability to develop and test hypotheses.

Computational thinking also intersects with engineering because computer systems

interact with the real world. However, computational thinkers can design and create virtual

worlds, not limited by physical reality (Wing, 2007). Although Wing (2007) states that

computer science relies on mathematics as a foundation, Sussman (NRC, 2010) affirms that

mathematical thinking revolves around abstract structures while computational thinking

9

revolves around abstract methodology. The connections between computational thinking and

mathematics, via the concepts in discrete mathematics, are proposed by Lieu and Wang

(2010). Zhang and Luo (2012) propose that computational thinking is an integration of both

mathematical and engineering thinking. In primary education, Eisenberg (2010) suggests

exposing pupils to computational thinking with tactile objects including paper and beads.

Computational thinking could be viewed as bringing science and engineering together. It

could be viewed as a meta-science concerned with studying methods of thinking that are

applicable to many different disciplines (NRC, 2010). While the ability to think logically,

mathematically, heuristically, and from an engineering perspective are certainly capabilities

that a computational thinker may exhibit, references to these terms in this literature are not

well expanded.

Although the term logical thinking, as described above, may not be suitable to include

in a definition of computational thinking, the potentially analogous term, algorithmic

thinking, requires further investigation. In her original article, Wing (2006) does not use the

term algorithmic thinking, preferring the word heuristic instead. However, by 2011, she

extends her definition of computational thinking to include algorithmic and parallel thinking

(Wing, 2011). Moursund (NRC, 2010) suggests that computational thinking is related to the

idea of procedural thinking, as proposed by Seymour Papert in Mindstorms. He defines a

procedure as a step-by-step set of instructions that can be carried out by a device. The same

theme is continued by Sussman (NRC, 2010), who defines computational thinking as a way

of devising explicit instructions for accomplishing tasks. The idea of algorithm is further

extended to include the notion of basic flow control (Lu & Fletcher, 2009). Inclusion of

algorithmic thinking in a curriculum for high schools appears prior to Wing’s contribution.

In the Israeli computer science curriculum, Gal-Ezer, Beeri, Harel, and Yehudai (1995)

placed an emphasis on inclusion of the study of algorithmic processes. In primary schools,

10

the concept of algorithm is interpreted by Serafini (2011) to be key to computational

thinking. Another example of the use of algorithmic thinking in the classroom is provided by

Davies (2008) who advocates splitting thinking tasks from programming tasks. Contexts,

other than computer science, are also identified as using the computational thinking concept

of algorithmic thinking (Yevseyeva & Towhidnejad, 2012). The term algorithm is

interpreted as a step-by-step procedure for accomplishing tasks, not just in computer science,

but in other disciplines. It is evidenced through the creation of algorithms – algorithmic

design. There appears to be a consensus that computational thinking incorporates aspects of

the creation and use of algorithms. In order to represent these contributions to a definition of

computational thinking, the single term algorithm design is proposed.

Not all of the types of thinking suggested for inclusion in the definition of

computational thinking bring further refinement to the term. Tying a definition of

computational thinking to terms such as logically or heuristically, with their open-ended

interpretation, or to specific disciplines such as mathematics or engineering do not help

advance the development of K-12 curricula and do not aid the development of computational

thinking assessment instruments. Inclusion of these terms broadens the definition of

computational thinking rather than narrows the focus. Terms expressing the idea of logical

thinking or equivalence further dilute a definition of computational thinking. On the other

hand, the idea of algorithm, incorporating the design process, is represented consistently in

literature and its interpretation does not vary. Because of its wide acceptance and appropriate

definition, the idea of algorithm is applicable for inclusion in a definition of computational

thinking. Contributions from the literature that incorporate the idea of algorithm are

represented by the term algorithmic design.

11

Problem solving terms

The idea that computational thinking has some relationship to problem solving

appears frequently in the represented literature. The specific terms problem solving, analysis,

and generalisation are most frequently employed in discussions of general problem-solving

skills. This section explores the interpretation of these terms and the viability of

incorporating them into the definition of computational thinking.

Problem solving, in one form or another, appears frequently in the literature presented

here. There is agreement for describing computational thinking as a problem-solving

activity. However, the literature does not illuminate problem solving in detail. Wing (2006,

2008), of course, incorporates solving problems using computer science concepts in her

definition of computational thinking. The broadness of the problem-solving skills employed

in computational thinking, in opposition to specific technical skills, is pointed out by Snyder

(NRC, 2010). Kranov et al. (2010), and Voskoglou and Buckley (2012) identify a close

relationship between computational thinking and critical thinking. A requirement for a

computing device is introduced by Barr and Stephenson (2011), who state that the essence of

computational thinking is solving problems in a way that can be implemented with a

computer. Henderson (NRC, 2011) concisely describes computational thinking as a type of

generalised problem solving with constraints. Problem solving is emphasised by Linn (NRC,

2010) who includes in the qualities of a successful computational thinker, the ability to

engage in sustained investigative processes to generate problem solutions. Although there

appears to be a consensus that computational thinking is perceived as a type of problem

solving, the term is not sufficiently specific to define it.

The term analysis is included by some commentators in the definition of

computational thinking. Interestingly, the term appears in relation to problems, solutions, and

data, as in analyse a problem, analyse a solution, and analyse the data. Analyse, in the

12

context of problems, fits the category of problem solving, as defined above. Collection and

analysis of data is proposed in a definition of computational thinking by Yevseyeva and

Towhidnejad (2012). Analyse, in the context of solutions, could be interpreted as the

comparable term evaluate. In her initial article, Wing (2006) expresses the need for a

computational thinker to make trade-offs, by evaluating the use of time and space, power and

storage. This evaluation of algorithmic processes, including their power and limitations, is

foreshadowed by Gal-Ezer et al. (1995). Evaluation, in the guise of evaluating processes, is

identified again by Lu and Fletcher (2009). Although the term analysis is cited as an example

of computational thinking, the descriptions accompanying it more closely fit the term

evaluation (Lee et al., 2011). Application of the term to user interfaces is evidenced in the

second objective of the New Zealand proposed curriculum, as part of designing programs

(Bell et al., 2010). In their IT approach, L’Heureux et al. (2012) include the ability to

evaluate processes, in terms of efficiency and resource utilisation, and the ability to recognise

and evaluate outcomes. Although the term analyse attracts some agreement for inclusion in a

definition of computational thinking, descriptions of the term found in this literature imply an

evaluative process. Analyse, in the context of problems and data, incorporates the previously

defined terms of abstraction and decomposition. Descriptions of the term analyse, in the

context of solutions, are attributed to the term evaluation.

A specific term that appears sparingly in the literature definitions is generalisation.

Generalisation is the step of recognising how small pieces may be reused and reapplied to

similar or unique situations. It is the ability to move from specific to broader applicability,

for example, understanding how to draw a square by defining internal angles, then applying

the same algorithm to produce an approximation of a circle. The ability to recognise parts of

solutions that have been used in previous situations or that might be used in future situations

is included by Kolodner in a definition of computational thinking (NRC, 2011). These parts,

13

or functional pieces, can be used to solve the current problem or combined in different ways

to solve new problems (NRC, 2011). This concept of generalising processes is also described

by Voskoglou and Buckley (2012). The term generalisation, itself, is described in a proposed

curriculum as recognising common patterns and by sharing common features (CAS, 2012).

The idea moves forward from decomposition, described above. This same idea is expressed

as transfer of computational pattern use from a game scenario to a science scenario by

Basawapatna, Koh, Repenning, Webb, and Marshall (2011). Although the exact term,

generalisation, is used sparingly in the literature, the idea of recognising and reusing common

parts of a solution or process is appropriate for inclusion in a definition of computational

thinking.

Possible terms examined in this section include problem solving, analysis, and

generalisation. Problem solving is a broad term that, although used consistently throughout

the literature, is not well defined. Analysis, used in the context of a problem or data, is also a

broad term, often incorporating the ideas of abstraction and decomposition. Analysis, used in

the context of a solution, is analogous to evaluation and is used consistently in the literature.

Although the term generalisation is used infrequently in the literature, there are descriptions

of analogous processes that are attributable to the term. Therefore, from this set of possible

terms, the ones used most consistently, with the least disparity of interpretation, and which

refine the definition are the terms evaluation and generalisation.

Computer science terms

It is clear that computational thinking has a deep relationship with computer science.

Some suggest specific computer science terminology be included in a definition of

computational thinking. The specific terms include systems design, automation, and more

general computer science concepts such as recursion and recovery through redundancy. This

14

section explores the viability of incorporating these terms into the definition of computational

thinking.

Systems design, although not mentioned frequently, is still used to describe

computational thinking. Designing systems based on concepts used in computer science is

mentioned by Wing (2006). Again, this inclusion is foreshadowed by Gal-Ezer et al. (1995)

who incorporate the study of the design and implementation of computing systems in their

curriculum. One of Denning’s Great Principles of Computing includes a category based on

the design and building of software systems (Denning, 2007). He goes further in describing

systems as one of the four core practices, in which computing professionals engage, along

with programming, modelling, and innovating (Ubiquity, 2007). The focus in each of these

cases is systems design as a product-oriented process. Systems design evidences the ability

to think computationally, but does not necessarily define it.

A particular term, popularised by Wing in defining computational thinking, is

automation. She connects the term to that of abstraction when discussing the mechanisation

of abstraction layers and the relationships between them (Wing, 2007). Denning also

acknowledges that this is what happens when programming (Ubiquity, 2007). Later, a

stronger connection is made by Wing when defining computing as the ‘automation of our

abstractions’ (2008, p. 3718). While it is acknowledged that automation has an important

role in evidencing computational thinking, its suitability for inclusion in a definition must be

viewed critically. Specifying that the result of computational thinking must be

implementable by a computing device uniquely separates it from those terms applicable

across other domains, such as logical thinking and mathematical thinking. However, there is

some variation in the perception of the relationship between automation and computing

device. One perspective on automation proposes the need for a computer, a digital

computing device. In this view, the automation is a computer program, visualisation, file,

15

model, or representation created or interacted with by a user. The examples of automation

provided by Barr and Stephenson (2011) include the use of spreadsheet applications,

modelling software, and programming environments. The idea of models and simulations

enabling automation is also suggested by the NRC (2010). This supports the idea that

automations allow repetitive tasks to be undertaken with minimal human input (NRC, 2011;

Lee et al., 2011). Both of these facilities, spreadsheets and multiple runs of simulations, are

identified as automation by the CSTA (2011). Robotics is interpreted as automation by

Grover and Pea (2013). Lee et al. (2011) describe interactions with automations rather than

the creation of automations. The process or processes required in the creation of these

automations may be possible terms for defining computational thinking. This is suggested by

Voskoglou and Buckley (2012) when referring to the automating of solutions. Another

perspective on automation as part of computational thinking asserts that there is no

requirement for a digital computing device. In this view, the automation may be a process,

idea, or even algorithm, but not one that must involve the use of a digital computing device.

A program artefact, which is often viewed as automation, is only evidence that computational

thinking has taken place. This is supported by Yevseyeva and Towhidnejad (2012) who

conclude that computational thinking does not require the use of a computer. Wing (2008)

goes to some length to include people when discussing mechanisation of abstractions. The

idea of including a human computing device removes the need for an automation to be

implementable by a digital device. Perković, Settle, Hwang, and Jones propose a definition

of automation that acknowledges this subtlety, ‘Automation is the mapping of computation to

physical systems that perform them’ (2010, p. 124). This leaves open the possibility of a

human being the physical system that performs an automation. Therefore, while some

authors (NRC, 2010; Barr & Stephenson, 2011; Lee et al., 2011; Grover & Pea, 2013) choose

examples of automation that are closely associated with digital computing devices, there is no

16

limit on the physical form that an automation might take (Wing, 2008; Perković et al., 2010).

A balance must be considered between the uniqueness that inclusion of the term automation

brings to the definition of computational thinking and the tendency to interpret automation as

a program, model, or visualisation requiring a digital computing device. Although including

the term may necessitate distinctly addressing that a digital computing device is not needed,

the uniqueness brought by the term to computational thinking mandates its inclusion in a

definition.

Throughout the literature, terms closely related to the general content of computer

science studies appear in descriptions of computational thinking. Wing (2007) herself

introduces computer science concepts such as thinking recursively, interpreting code as data

and data as code, type checking, prevention, detection, recovery through redundancy, damage

containment, error correction, prefetching, and caching. Additional concepts such as parallel

processing, testing, debugging, search strategies, algorithmic complexity, and pattern

matching are recognised in the NRC report (2010). Barr and Stephenson (2011) include the

abilities to think iteratively and recursively. Closer analysis reveals that not all of these

concepts are unique to the field of computer science. For example, mathematicians think

iteratively and engineers plan for recovery through redundancy. While each of these

concepts may be mastered by computational thinkers, none of them uniquely defines or helps

narrow a definition of computational thinking.

Possible terms examined in this section include systems design, automation, and more

general computer science concepts such as recursion and recovery through redundancy.

Systems design, resulting in a product, is evidence of the use of computational thinking skills,

not a definition of it. Automation, as an implementation of abstractions by computing

devices, uniquely distinguishes computational thinking from other forms of thinking. It is,

however, important to acknowledge that computing devices are not limited to digital devices

17

and do include humans as computing devices. Including terms that are interpretable as

computer science content, such as recovery through redundancy and parallel processing, do

not bring focus to the definition of computational thinking. Therefore, from the selection of

terms discussed in this section, only that of automation is suitable for inclusion in a definition

of computational thinking.

Imitation terms

Three additional terms, also used in discussions of computational thinking, are

modelling, simulation, and visualisation. These terms appear frequently in the represented

literature. This section explores the viability of including these terms in a definition of

computational thinking.

Wing (2006) began by defining computational thinking as modelling the appropriate

parts of a problem to facilitate a solution. Later, Blake (NRC, 2010) insists that the definition

of computational thinking should include modelling and visualisations. Brinda, Puhlmann,

and Schulte (2009) have identified, as one achievable curriculum standard, the processes

involved in modelling data. In the field of discrete mathematics, computer modelling is the

mathematical and computer-based process of solving real world problems (Liu & Wang,

2010). On the other hand, Fox and Kolodner (NRC, 2010) point out that it is the

manipulation of abstractions (models, simulations, and visualisations) that contribute to the

development of computational thinking skills. Cooper, Pérez, and Rainey (2010) define this

way of learning as ‘computational learning.’ In this context, a computer is a prerequisite for

developing skills in STEM subjects. Observing the results of changing variable values,

forming hypotheses, finding anomalies in data, and identifying invariants can all be achieved

by interacting with models, simulations, and visualisations. The manipulation of these

representations are agreed to enhance the development of computational thinking, but do not

18

necessarily define it. Although these tools are effective aids in developing computational

thinking skills, they are not suitable for inclusion in a definition of computational thinking.

Possible terms examined in this section include modelling, simulation, and

visualisation. These terms represent artefacts that evidence the use of computational thinking

or tools used to enhance computational thinking. As such, they are excluded from a potential

definition of computational thinking.

Proposed definition

The intent of this investigation is to shed new light on the discussions that attempt to

develop a definition of computational thinking. The objectives for such a definition, as stated

above, are: to define more narrowly, not more broadly; to bring an order to the criteria not

necessarily to accommodate all viewpoints; to refine the definition to facilitate assessment; to

retain the validity of work that has been done previously, such as the development of

curricula; to separate a definition from those activities that might promote acquisition of

computational thinking skills; and to separate a definition from those artefacts and activities

that evidence the use of computational thinking skills. Justification for inclusion or exclusion

is based on consistency of usage and consistency of meaning across the literature. Where

equivalences allowed, similar terms were grouped together. Where descriptions were

encountered without the direct usage of one of the proposed terms, they were attributed to the

term. The resulting definition reflects much of the consensus found in the literature while

removing the less well-defined terms.

Table 1 summarises the justification for each prospective term’s inclusion in or

exclusion from a proposed definition of computational thinking.

Term Status Justification

A thought process Include Consensus found in the literature

19

Abstraction Include Consensus found in the literature

Decomposition Include Consensus found in the literature

Logical thinking Exclude Broad term, not-well defined; incorporates the

concepts of abstraction and decomposition

Algorithmic design Include Well-defined across multiple disciplines; adheres

to idea of a thought process; does not require

creation of algorithm limited to digital

computing devices

Problem solving Exclude Broad term; evidences the use of skills; develops

acquisition of skills

Analysis Exclude Broad term; incorporates concepts of abstraction,

decomposition, algorithmic design, and

evaluation

Evaluation Include Well-defined across multiple disciplines

Generalisation Include Well-defined concept; often encountered

descriptively in the literature

Systems design Exclude Evidences the use of skills

Automation Include Distinct from other forms of thinking; must not

be interpreted as requiring a digital device

Computer science

content

Exclude Evidences the use of skills

Modelling,

simulation, and

visualisation

Exclude Evidences the use of skills in their creation;

manipulation develops acquisition of skills

Table 1. Computational thinking definition terminology

20

As supported by the preceding arguments, computational thinking is an activity

associated with problem solving, often resulting in an artefact or product. Computational

thinking is a cognitive process resulting in an automation that is developed by the use of

abstraction, decomposition, algorithmic design, evaluation, and generalisation.

Conclusion

There is a need for a robust, clear, and agreed definition of computational thinking.

The definition, to gain both academic and professional credence, should facilitate the

development of computer science curricula in line with Wing’s original vision to encourage

computational thinking for all. The definition also needs to support classroom practice and

curriculum development where the teaching of computing is undergoing radical changes from

K-12. The review of the literature and analysis of the findings bring further understanding of

the complex nature of the construct ‘computational thinking’ that has bearing upon the

teaching of learners of all ages. The definition is refined by exclusion and inclusion of

specific terms by the application of selection criteria. The definition can now enable

appropriate assessment tools to be developed which measure computational thinking skills.

In conclusion, computational thinking is a brain-based activity that enables problems to be

resolved, situations better understood, and values better expressed through systematic

application of abstraction, decomposition, algorithmic design, generalisation, and evaluation

in the production of an automation implementable by a digital or human computing device.

References

Aho, A. V. (2012). Computation and Computational Thinking. Computer Journal, 55(7),

832-835. doi:10.1093/comjnl/bxs074.

Barr, V. & Stephenson, C. (2011). Bringing Computational Thinking to K-12: What Is

Involved and What Is the Role of the Computer Science Education Community? ACM

Inroads, 2(1), 48-54. doi:10.1145/1929887.1929905.

Basawapatna, A., Koh, K. H., Repenning, A., Webb, D. C. & Marshall, K. S. (2011).

Recognizing Computational Thinking Patterns. Proceedings of the 42nd ACM

21

Technical Symposium on Computer Science Education, 245-250. New York: ACM.

doi:10.1145/1953163.1953241.

Bell, T., Andreae, P. & Lambert, L. (2010). Computer Science in New Zealand High Schools.

Proceedings of the Twelfth Australasian Conference on Computing Education, 103,

15-22. Australian Computer Society, Inc.

Brinda, T., Puhlmann, H. & Schulte, C. (2009). Bridging ICT and CS - Educational Standards

for Computer Science in Lower Secondary Education. Proceedings of the 14th annual

ACM SIGCSE Conference on Innovation and Technology in Computer Science

Education, 288-292. New York: ACM. doi:10.1145/1562877.1562965.

Computer Science Teachers Association Task Force (2011) K–12 Computer Science

Standards. New York, ACM.

Computing at School Working Group. (2012) Computer Science: A Curriculum for Schools.

Retrieved from:

http://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf.

Cooper, S., Pérez, L. C. & Rainey, D. (2010). K--12 Computational Learning. Commun.

ACM, 53(11), 27-29. doi:10.1145/1839676.1839686.

Curzon, P., Peckham, J., Taylor, H., Settle, A. & Roberts, E. (2009). Computational Thinking

(CT): On Weaving It In. SIGCSE Bull., 41(3), 201-202.

doi:10.1145/1595496.1562941.

Davies, S. (2008). The Effects of Emphasizing Computational Thinking in an Introductory

Programming Course. Frontiers in Education Conference, 2008. FIE 2008. 38th

Annual, IEEE. doi:10.1109/fie.2008.4720362.

Denning, P. J. (2007). Computing Is a Natural Science. Commun. ACM, 50(7), 13-18.

doi:10.1145/1272516.1272529.

Denning, P. J. (2011). Ubiquity Symposium: What Have We Said About Computation?:

Closing Statement. Ubiquity, 2011(April), 1-7. doi:10.1145/1967045.1967046.

Eisenberg, M. (2010). Bead Games, or, Getting Started in Computational Thinking without a

Computer. International Journal of Computers for Mathematical Learning, 15(2),

161-166. doi:10.1007/s10758-010-9167-5.

Gal-Ezer, J., Beeri, C., Harel, D. & Yehudai, A. (1995). A High School Program in Computer

Science. Computer, 28(10), 73-80. doi:10.1109/2.467599.

Grover, S. & Pea, R. (2013). Computational Thinking in K–12: A Review of the State of the

Field. Educational Researcher, 42(1), 38-43. doi:10.3102/0013189x12463051.

Guzdial, M. (2008). Education: Paving the Way for Computational Thinking. Commun.

ACM, 51(8), 25-27. doi:10.1145/1378704.1378713.

Guzdial, M. (2011, March 22). Re: A Definition of Computational Thinking from Jeannette

Wing. [Web log message]. Retrieved from

http://computinged.wordpress.com/2011/03/22/a-definition-of-computational-

thinking-from-jeanette-wing/.

Guzdial, M. (2012, April 6). Re: A Nice Definition of Computational Thinking, Including

Risks and Cyber-Security. [Web log message]. Retrieved from

http://computinged.wordpress.com/2012/04/06/a-nice-definition-of-computational-

thinking-including-risks-and-cyber-security/.

Hu, C. (2011). Computational Thinking: What It Might Mean and What We Might Do About

It. Proceedings of the 16th Annual Joint Conference on Innovation and Technology in

Computer Science Education, 223-227. New York: ACM.

doi:10.1145/1999747.1999811.

Iyer, S., Baru, M., Chitta, V., Khan, F. & Vishwanathan, U. (2010) Model Computer Science

Curriculum for Schools. Retrieved from: http://www.cse.iitb.ac.in/~sri/papers/CSC-

April2010.pdf.

http://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf
http://computinged.wordpress.com/2011/03/22/a-definition-of-computational-thinking-from-jeanette-wing/
http://computinged.wordpress.com/2011/03/22/a-definition-of-computational-thinking-from-jeanette-wing/
http://computinged.wordpress.com/2012/04/06/a-nice-definition-of-computational-thinking-including-risks-and-cyber-security/
http://computinged.wordpress.com/2012/04/06/a-nice-definition-of-computational-thinking-including-risks-and-cyber-security/
http://www.cse.iitb.ac.in/~sri/papers/CSC-April2010.pdf
http://www.cse.iitb.ac.in/~sri/papers/CSC-April2010.pdf

22

Kranov, A. A., Bryant, R., Orr, G., Wallace, S. A. & Zhang, M. (2010). Developing a

Community Definition and Teaching Modules for Computational Thinking:

Accomplishments and Challenges. 2010 ACM Conference on Information Technology

Education, SIGITE 2010, 143-148. New York: ACM. doi:10.1145/1867651.1867689.

L'Heureux, J., Boisvert, D., Cohen, R. & Sanghera, K. (2012). It Problem Solving: An

Implementation of Computational Thinking in Information Technology. Proceedings

of the 13th Annual Conference on Information Technology Education, 183-188. New

York: ACM. doi:10.1145/2380552.2380606.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J. &

Werner, L. (2011). Computational Thinking for Youth in Practice. ACM Inroads,

2(1), 32-37. doi:10.1145/1929887.1929902.

Liu, J. & Wang, L. (2010). Computational Thinking in Discrete Mathematics. Second

International Workshop on Education Technology and Computer Science (ETCS), 1,

413-416. IEEE. doi:10.1109/etcs.2010.200.

Lu, J. J. & Fletcher, G. H. L. (2009). Thinking About Computational Thinking. Proceedings

of the 40th ACM Technical Symposium on Computer Science Education, 260-264.

New York: ACM. doi:10.1145/1508865.1508959.

National Research Council. (2010) Report of a Workshop on the Scope and Nature of

Computational Thinking. Retrieved from:

http://www.nap.edu/catalog.php?record_id=12840.

National Research Council. (2011) Report of a Workshop of Pedagogical Aspects of

Computational Thinking. Retrieved from:

http://www.nap.edu/catalog.php?record_id=13170.

Perković, L., Settle, A., Hwang, S. & Jones, J. (2010). A Framework for Computational

Thinking across the Curriculum. Proceedings of the Fifteenth Annual Conference on

Innovation and Technology in Computer Science Education, 123-127. New York:

ACM. doi:10.1145/1822090.1822126.

Serafini, G. (2011) Teaching Programming at Primary Schools: Visions, Experiences, and

Long-Term Research Prospects, In: I. Kalaš & R. Mittermeir (Eds) Informatics in

Schools. Contributing to 21st Century Education. (vol. 7013), 143-154, Berlin:

Springer-Verlag.

The Royal Society. (2012) Shut Down or Restart? The Way Forward for Computing in UK

Schools. Retrieved from:

http://royalsociety.org/uploadedFiles/Royal_Society_Content/education/policy/compu

ting-in-schools/2012-01-12-Computing-in-Schools.pdf.

Ubiquity (2007). An Interview with Peter Denning on the Great Principles of Computing.

Ubiquity, 2007(June), 1. doi:10.1145/1276162.1276163.

Voskoglou, M. G. & Buckley, S. (2012). Problem Solving and Computational Thinking in a

Learning Environment. Egyptian Computer Science Journal, 36(4), 28-46.

doi:arXiv:1212.0750v1.

Werner, L., Denner, J., Campe, S. & Kawamoto, D. C. (2012). The Fairy Performance

Assessment: Measuring Computational Thinking in Middle School. Proceedings of

the 43rd ACM technical symposium on Computer Science Education, 215-220. New

York: ACM. doi:10.1145/2157136.2157200.

Wing, J. (2006). Computational Thinking. Commun. ACM, 49(3), 33-35.

doi:10.1145/1118178.1118215.

Wing, J. (2007) Computational Thinking. Retrieved from:

http://www.cs.cmu.edu/afs/cs/usr/wing/www/Computational_Thinking.pdf.

Wing, J. (2008). Computational Thinking and Thinking About Computing. Philosophical

Transactions of The Royal Society A, 366, 3717-3725. doi:10.1098/rsta.2008.0118.

http://www.nap.edu/catalog.php?record_id=12840
http://www.nap.edu/catalog.php?record_id=13170
http://royalsociety.org/uploadedFiles/Royal_Society_Content/education/policy/computing-in-schools/2012-01-12-Computing-in-Schools.pdf
http://royalsociety.org/uploadedFiles/Royal_Society_Content/education/policy/computing-in-schools/2012-01-12-Computing-in-Schools.pdf
http://www.cs.cmu.edu/afs/cs/usr/wing/www/Computational_Thinking.pdf

23

Wing, J. (2011) Research Notebook: Computational Thinking - What and Why? Retrieved

from: http://link.cs.cmu.edu/files/11-399_The_Link_Newsletter-3.pdf.

Yevseyeva, K. & Towhidnejad, M. (2012). Work in Progress: Teaching Computational

Thinking in Middle and High School. Frontiers in Education Conference (FIE), 2012,

1-2. IEEE. doi:10.1109/fie.2012.6462487.

Zhang, Y. & Luo, C. (2012). Training for Computational Thinking Capability on

Programming Language Teaching The 7th International Conference on Computer

Science & Education (ICCSE 2012), 1804-1809. IEEE.

doi:10.1109/ICCSE.2012.6295420

http://link.cs.cmu.edu/files/11-399_The_Link_Newsletter-3.pdf

